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Abstract: Digitals twins, used to represent dynamic environments, require accurate tracking of
human movement to enhance their real-world application. This paper contributes to the field by
systematically evaluating and comparing pre-existing tracking methods to identify strengths, weak-
nesses and practical applications within digital twin frameworks. The purpose of this study is
to assess the efficacy of existing human movement tracking techniques for digital twins in real
world environments, with the goal of improving spatial analysis and interaction within these virtual
modes. We compare three approaches using indoor-mounted lidar sensors: (1) a frame-by-frame
method deep learning model with convolutional neural networks (CNNs), (2) custom algorithms
developed using OpenCV, and (3) the off-the-shelf lidar perception software package Percept ver-
sion 1.6.3. Of these, the deep learning method performed best (F1 = 0.88), followed by Percept
(F1 = 0.61), and finally the custom algorithms using OpenCV (F1 = 0.58). Each method had particular
strengths and weaknesses, with OpenCV-based approaches that use frame comparison vulnerable to
signal instability that is manifested as “flickering” in the dataset. Subsequent analysis of the spatial
distribution of error revealed that both the custom algorithms and Percept took longer to acquire
an identification, resulting in increased error near doorways. Percept software excelled in scenarios
involving stationary individuals. These findings highlight the importance of selecting appropriate
tracking methods for specific use. Future work will focus on model optimization, alternative data
logging techniques, and innovative approaches to mitigate computational challenges, paving the way
for more sophisticated and accessible spatial analysis tools. Integrating complementary sensor types
and strategies, such as radar, audio levels, indoor positioning systems (IPSs), and wi-fi data, could
further improve detection accuracy and validation while maintaining privacy.

Keywords: terrestrial lidar; indoor geography; deep learning; dynamic digital twins; computer vision;
lidar perception; occupancy and movement

1. Introduction

The average American spends approximately 87% of their time inside buildings [1,2],
yet indoor spaces are much less well mapped compared with outdoor spaces [3]. While
satellites and aerial photography have provided ample opportunities to collect data for
outdoor spaces over many decades [4–6], tools for examining indoor spaces have been
limited [7–9]. Mapping and surveying methods and technology have developed greatly
in the last century with the combined efforts of industry, government, and organizations
evolving from traditional methods, including chain and compass, to the optical era of
theodolites, electronic distance measurement, and aerial photogrammetry [10]. The devel-
opment of multi- and hyper- spectral imagery in the satellites has allowed the mapping
of other properties of the Earth, including temperature [11,12], vegetation [13,14], disaster
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monitoring [15,16], and the monitoring of public health [17,18], among other uses [19,20].
Research and development efforts using satellite imagery have grown greatly in recent
years, with more derived products like land cover/land use [21], city growth [22], and
even temporal analysis of physical phenomena readily available. However, traditional
surveying equipment and technologies designed for outdoor spaces are not effective in-
doors [23]. For example, GPS signals, which have revolutionized outdoor mapping [24,25],
are weakened by roofs and walls, leading to inaccurate indoor positioning [26]. Similarly,
conventional surveying tools that depend on line-of-sight measurements are ineffective in
the geometrically complex and obstructed indoor settings [27].

Recent advancements in sensor technology, particularly lidar and photogrammetry,
offer cost-effective means to map indoor spaces with high detail [28,29]. Lidar’s precision
in generating three-dimensional data makes it ideal for capturing indoor complexities [30],
while structure from motion (SfM) photogrammetry provides high-resolution maps and
models [9]. Unlike outdoors, where a single satellite can apprehend most of a scene by
itself, it is impossible to collect data from a single location for indoor spaces. Indoor spaces
are typically more complex than outdoor spaces, with many objects that can obstruct the
field of view. This is true at the building scale and within rooms where views are generally
obstructed by various objects. Lighting conditions and clutter in indoor spaces make it
difficult to differentiate between objects and background elements [31]. As a result, indoor
mapping typically has relied on either a mobile mapper or multiple static sensors from dif-
ferent viewpoints. Both approaches are complex and are difficult to combine accurately [32].
Photogrammetry can be particularly difficult indoors, as variable lighting conditions and
privacy concerns for people in the space are among the challenges of using image-based
data acquisition methods [33]. Both lidar and photogrammetry rely on GPS outdoors to
geolocate scans. Mapping indoor spaces with lidar or photogrammetry typically involves
carrying a handheld or backpack-mounted 360-degree camera or scanner. However, as
GPS cannot easily be used indoors, it is difficult to apply Earth-based coordinates to indoor
spaces [34]. To compensate, operators will sometimes scan both the interior and exterior
simultaneously or align scans manually based on ancillary geospatial data. The develop-
ment of indoor positioning systems (IPS) further complements these technologies, enabling
real-time data collection within buildings [35,36].

In some ways, indoor maps closely resemble maps of outdoor spaces. For instance,
they commonly map areal and linear spaces and boundaries, including doors, floors,
roofs, and other structural parts of a building [37]. Common indoor maps include floor
plans of buildings and underground railway systems and are commonly used for general
navigation or for a specific use, such as to show emergency information like fire exit
routes [38]. In outdoor spaces, mapping is generally accomplished by means of global
coordinate systems such as latitude and longitude, or more specialized systems such as the
universal transverse Mercator are most often used, and these generally rely on a limited set
of commonly used reference data. Indoors, features like room numbers and floor numbers
are frequently employed as references by which to identify arbitrary positions inside a
building area in much the same way that addresses and street names function as a location
scheme outdoors. For instance, room 101 may refer to the first room on the first floor’s
hallway [37]. Methods for defining coordinate reference systems for individual buildings
that can be used in tandem with exterior coordinate systems have recently been defined
by geographers [39]. Indoor maps have many applications, including indoor navigation,
virtual reality, public safety management, and the integration of robotics in daily activities.
The use of GIS technology to combine data from indoor and outdoor spaces can have
several benefits. The process would involve aligning different coordinate systems used
for each type of space and then combining the data into a single, unified spatial data
frame. This would allow accurate positioning in all places, allowing for smooth navigation
between indoor and outdoor locations [40]. This can be useful for applications such as
wayfinding and emergency evacuation, where it is important to provide accurate and
reliable navigation both inside and outside of buildings. For the past few decades, GIS for



Remote Sens. 2024, 16, 3453 3 of 23

buildings has often relied on building information models (BIMs), essentially computer-
assisted design (CAD) models prepared during the construction of the buildings. Compared
with relatively feature-rich conventional outdoor geospatial data, these models tend to be
very schematic in nature. They are typically more oriented to building construction and
convey information related to the strength and mechanics of the structure [41]. For static
modeling of indoor spaces, such as for creating a model of real estate for potential buyers,
360 photography and virtual reality have been widely employed. Matterport is a company
that models indoor spaces that can be presented through online platforms and allows
potential buyers to view the space without being physically present [42]. The company
has also partnered with other organizations to develop applications for disaster response,
heritage preservation, and other fields [43]. While BIM models are effective abstractions of
indoor spaces, their focus is construction and structural integrity, rather than cartographical
functionality. From a mapping perspective, point clouds and meshed models are complex
data models, and BIMs are used for navigational and inventory management purposes.
Recent developments in mapping indoors include GIS-based solutions, including open
standards like City Geographic Markup Language (GML), Indoor Geography Markup
Language (IndoorGML), OpenStreetMap (OSM), and the Facilities Information Spatial
Data Model (FISDM). These standards map indoor spaces and buildings in different level
of detail (LOD) schemes [39]. Esri, a leader in the field of geospatial sciences, is also
developing indoor mapping tools such as FISDM and ArcGIS Indoors.

Building on these technological foundations, the concept of digital twins has emerged as
a transformative paradigm in the field [44]. By integrating data from lidar, photogrammetry,
and IPS, digital twins create detailed, representative, and realistic models of buildings.
Digital twins are virtual counterparts for physical entities and the data connections between
them. They are becoming increasingly popular ways to enhance the performance of
physical entities by using computational techniques without affecting the physical entity
itself. Digital twins create a mirrored version of physical objects by capturing sufficient
information and representing them in the virtual platform simplifying the ability to do
mathematical computations [45].

Digital twins can simulate indoor spaces well, with different levels of detail showing
different components of a structure [46]. With the integration of GIS into the technology,
a digital twin is equipped to depict the geographic dimensions of a physical entity. With
the ongoing development of physical–cyber fusion and geospatial technology, environ-
ments, entities, and networks are being modeled holistically in digital form, connecting
information, systems, and behavior [47].

Our paper contributes to this field by demonstrating how lidar technology can enhance
digital twins with real-time human movement tracking in indoor environments. Unlike
traditional tracking methods, the use of lidar overcomes challenges such as privacy issues,
signal instability and occlusions, which are often present in complex indoor spaces. This
novel application of lidar for human movement tracking within digital twin frameworks
offers new opportunities for improving the accuracy and responsiveness of virtual represen-
tations in real-world settings. Our approach, leveraging lidar’s high-precision spatial data,
further strengthens the utility of digital twins by ensuring accurate, anonymized tracking of
human presence and interactions, contributing to more dynamic and realistic simulations.

These developments support the monitoring of indoor space without affecting ongo-
ing activities. They can be used to simulate the performance of spaces in various scenarios,
such as how people’s behaviors adjust to different levels of occupancy or changes in envi-
ronmental settings. Such simulations can help to optimize the use of indoor space and even
identify potential issues before they arise in the physical world [48]. This has significantly
improved our ability to map and model the physical aspects of indoor environments [49],
especially our capability to represent the spatial layout, structural composition, and inter-
relationships between objects. These models are not only theoretical but have practical
applications across various fields, including real estate [42], emergency response [50,51],
and facility operations and maintenance [52,53].
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The applications of object detection to indoor spaces are increasingly popular, with
smart offices and shared indoor spaces being a major part of modern buildings. The
techniques for object detection and tracking can support the many types of spatial analysis.
For example, the study of how socio-physical behavior changes based on the layout of
space in enclosed areas gives a proper understanding of the association between people
and places [54]. Understanding such socio-physical interaction helps planners design and
allocate resources to infrastructure before construction, as well as help maintain buildings
according to the intensity of use of the resources. By utilizing this, it is possible to optimize
the utilization of space and infrastructure, thereby improving the efficiency of the people
and resources within [55]. Furthermore, modern technologies such as automated robots
can also be deployed for regular household tasks with the idea of where furniture is and
how people move.

The theory of space syntax is often used to analyze the spatial layout and organization
of built environments, such as cities, buildings, and public spaces. It is based on the idea
that the layout and configuration of space can significantly impact how people use and
navigate through it [56]. For instance, recognizing majorly occupied spaces, corridors, or
hallways would allow the building managers to manage traffic congestion in any setting.
For a shared space, this might also mean directing traffic so that people pass through
places without difficulties and can still conveniently interact with each other. This would
allow planners to plan and lay out the settings of infrastructure components to increase the
efficiency of space use, including residential and commercial use cases [57].

Human detection and tracking have been relatively limited to images and videos
generated from mostly RGB CCTV cameras. The primary concern with this approach is
the privacy concerns of people being captured in the videos and images. Though CCTV
cameras are of great use for security concerns in public spaces, for analysis purposes,
privacy is a big concern [58]. With lidar, the data are collected as a set of 3D points in
space. The lidar streams capture a coarse human shape when people pass the sensor’s
field of view. This eliminates the risk of people’s privacy being compromised with the
study. Previous studies have shown that, although RGB-based methods can be highly
effective in controlled environments [59,60], privacy issues often hinder their application
in public or shared spaces [61]. In contrast, lidar provides an anonymized alternative that
preserves privacy without compromising accuracy, making it more suitable for applications
in sensitive settings [62].

Lidar also offers additional capabilities, including the ability to work under dynamic
lighting conditions [63]. In comparison with structure from motion (SfM) photogrammetry,
which often struggles with repetitive textures in indoor spaces and requires complex key-
point matching [64,65], lidar streams produce less noisy data and offer higher spatial
resolution. The models using SfM require key point matching, which is very complex for a
repetitive texture in indoor spaces. Further, the lidar-derived point clouds are inherently
spatial compared with images and videos captured, as the data is collected as a collection
of x, y, and z distances relative to the sensor. While prior research has demonstrated the
effectiveness of image-based methods in outdoor environments, our work, using lidar,
extends this capability to complex indoor environments, offering greater accuracy in
positioning and preserving privacy, particularly in shared spaces where human activity
may involve sitting or interacting with objects [66,67]. Additionally, though images and
videos are easy to analyze objects with, lidar streams tend to give more accurate information
about positioning.

Radar, by contrast, operates effectively in adverse weather conditions like fog or rain
but provides lower spatial resolution, which limits its accuracy in detecting subtle human
movements [68,69]. However, radar’s robustness in harsh environments makes it a strong
candidate for outdoor applications where lidar’s performance might be compromised.
Previous studies [62,70,71] comparing radar and lidar for localization and mapping have
demonstrated that, while radar is effective in challenging weather conditions, lidar remains
the superior choice for environments where precision is important.
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The field of object detection has been strongly influenced by advancements in com-
puter vision [72], deep learning and high-performance computing [73]. The ability of
computer vision to differentiate people from background objects has enabled computers to
assess simple video feeds and extract comprehensive information. Most of these methods
are based on detecting the motion of objects using background subtraction and appropriate
spatiotemporal filtering techniques. After this, the object’s shape, texture, and type of
motion can be used to characterize the object as a human being [74]. OpenCV is a compre-
hensive library of programming functions aimed at real time computer vision. It provides
tools and techniques to process images and videos to identify objects, classify human
actions, track movements, and monitor moving objects. Deep learning has enhanced object
detection capabilities within images or video frames [75]. You Only Look Once (YOLO) is a
deep learning model capable of real-time object detection, including prediction of bounding
boxes and probabilities [76]. Building upon the YOLO model, the YOLOv5 model is a
recent model in object detection, offering improved speed and accuracy [77]. Over the
years leading to YOLOv5, each version of YOLO introduced significant improvements.
YOLOv2 or YOLO9000, improved the resolution at which the model processes images [78]
while YOLOv3 added detection capabilities at different scales, incorporating the use of
residual blocks to help the model better generalize a variety of object sizes [79]. Further,
YOLOv4 introduced additional features like weighted residual connections, cross-stage par-
tial connections and cross mini-batch normalization. The newer versions, YOLOv6 [80] and
YOLOv7 [81], introduced significant enhancements to the detection capabilities. YOLOv6
focuses on optimizing speed and accuracy for industrial applications, achieving impressive
frame rates and detection precision across various hardware platforms. YOLOv7, mean-
while, sets a new benchmark for real-time object detectors, surpassing previous models in
both speed and accuracy, and demonstrating exceptional performance on the MS COCO
dataset without the need for pre-trained weights. While YOLOv6 and YOLOv7 introduce
significant enhancements, YOLOv5 is often preferred for its relative stability and efficiency,
requiring significantly fewer computational resources.

Convolutional neural networks (CNNs) are vital in deep learning-based object detec-
tion models like YOLO and YOLOv5 [76,77]. CNNs are specifically designed to adaptively
learn spatial hierarchies of features from input images, making them highly effective for
tasks such as object recognition and localization [75,82]. The training of YOLOv5 requires
a large annotated dataset that includes diverse objects and scenarios [76]. In recent years,
deep learning models like YOLOv4 and YOLOv5 have become standard for object detection
across multiple domains, including surveillance and smart cities [83–86]. However, their
application in lidar-based human detection remains underexplored, which is an area our
research addresses, comparing their performance with other traditional models.

Lidar has also recently been used in real-time streaming and object detection. Com-
panies such as Blickfeld (Munich, Germany), Velodyne (San Jose, CA, USA), Outsight.ai
(Paris, France), Seoul Robotics (Seoul, Republic of Korea), and Exwayz (Bidart, France)
have been developing specialized lidar sensors and “perception” system software for this
purpose. Blickfeld, Seoul Robotics, and Outsight.ai are leading research on lidar technology
for the internet of things (IoT), smart cities, and efficient robotics development. Exwayz
is leading research in real-time 3D lidar processing, and Velodyne has been a leader in
developing lidar sensors. Lidar perception software acts to detect multiple objects through
the field of view of multiple sensors [87]. Combined with maps, the detection of movement
patterns can facilitate the analysis of how a particular space is being used [88]. This has
many applications, including crowd management, emergency response, driver assistance,
and transportation safety.

Despite these advancements, there remains a notable gap in capturing an important
aspect of indoor spaces—human behavior—though new geographic approaches are emerg-
ing [89]. Digital twins are mostly static representations that do not currently represent
human activities and dynamics within built spaces. Earlier works utilizing lidar for indoor
space mapping have focused primarily on static structures rather than dynamic human
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movement [90,91]. Our study expands upon this by integrating deep learning models to
track and analyze human behavior in real time, bridging a gap in current lidar-based map-
ping techniques. These dynamic digital twins offer a more holistic understanding of how
buildings serve their users and can enhance simulation and predictive analytics without
disrupting the physical environment. By simulating various scenarios and assessing the
impacts of design and operational changes, these models may help inform decisions related
to space utilization, user experience, and operational efficiency.

To build towards a more dynamic digital twin, this project uses a network of fixed-
mounted lidar sensors within the mixed-use Building X at University X. The choice of
lidar technology over camera-based methods was deliberate, prioritizing the anonymity of
individuals within the space using lidar’s ability to generate precise 3D models of indoor
environments without capturing identifiable information, thus offering a balance between
detailed spatial data and privacy considerations [92]. Designed to encourage interaction
and collaboration among its occupants, the study space within Building X aligns with the
project’s broader objectives. The research is part of a larger project, titled the Building
Ecology Project, which aims to investigate various methodologies, including sensor-based
and qualitative and quantitative social approaches, to understand how patterns of use,
movement, and place evolve over time and respond to various disturbances and shifts in
resource distribution. Additional portions of the project include interviews, questionnaires,
and other methods to understand how this newly constructed building becomes a place
imbued with meaning. Ultimately, the project aims to understand human–building interac-
tions from a geographic perspective, enhancing our ability to design spaces that adapt to
and fulfill the complex needs of their users.

This study involves the development and evaluation of lidar-based algorithms to track
occupancy and movement in this shared indoor space. Two methods use computer vision
as their basis [93]—deep learning [73,76,82] and OpenCV [94]—and utilize a rasterized
version of the lidar data. A third method uses Blickfeld’s lidar perception software, Percept
version 1.6.3., to detect moving objects in real time within the lidar data stream. To
assess these methods, we use traditional metrics, such as F1 score, recall and precision.
This comparative analysis aims to highlight the capabilities and limitations of current
technologies in capturing the intricacies of human activity in indoor spaces.

2. Materials and Methods

To better understand aggregate occupancy and movement patterns of people in public
spaces while maintaining privacy, the study evaluated three different lidar-based object
detection methods for people moving through indoor spaces: (1) Blickfeld’s lidar per-
ception software Percept version 1.6.3., using a full 3D-point cloud; (2) deep learning;
and (3) OpenCV-based approaches on a projected 2D raster of the lidar data. These ap-
proaches each have different strengths and challenges. Because Percept uses the entire 3D
point cloud it has additional information that can be applied to segmentation and detection;
however, it is also more computationally demanding and more affected by noise in the
data. Another drawback is that it can only be run on streaming real time data and cannot
be operated on data that are recorded. The deep learning and OpenCV approaches were
developed to meet these drawbacks while maintaining a high degree of accuracy.

The selection of the three object detection methods was driven by a combination
of concerns, as follows: data compatibility, computational efficiency, and detection accu-
racy. Initial explorations included various methods, including NetCDF analysis using
space-time cubes, deep learning with ArcGIS version 3.2.1., and several computer vision
techniques, such as mean shift algorithms. However, these methods exhibited significant
drawbacks. The space-time cube method proved unfeasible due to the data’s high volume
(~177 billion pixels per day), and processing capabilities. Deep learning approaches in
ArcGIS struggled with the high resolution of the lidar data, leading to suboptimal per-
formance. Similarly, mean shift algorithms using OpenCV did not yield satisfactory re-
sults in detecting people with requirements for noise filtering and preprocessing. Other
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image processing techniques, such as subtracting median images, also fell short in accu-
racy and were computationally intensive. The chosen methods—YOLOv5, OpenCV and
Percept—were selected because they provided a balanced solution to these issues. Specifi-
cally, they offered reliable detection of people in the lidar streams while managing compu-
tational resources effectively.

The study was conducted in the first-floor common areas of University X’s newly
constructed Building X, a 225,000 ft2, mixed-use building. Opened in August 2021, Building
X was designed to promote interaction and collaboration among approximately 600 under-
graduate residents. In addition to its function as a residence hall, Building X was designed
as a dynamic venue for academic and extracurricular activities, and contains several types
of space, including classrooms, studios, galleries, lounges, and a makerspace. This study
specifically targets the main lobby (i.e., community assembly) and its attached hallways
and exhibit space, areas characterized by considerable student activity, collaborative work,
and social interaction (Figure 1). This is an ideal location for examining space use patterns
and interactions among people from diverse backgrounds that use the shared space to
work, move through, and interact during different hours of the day, days of the week, and
across different weeks of the year.
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Eleven Blickfeld Cube 1 (Blickfeld, Munich, Germany) lidar sensors were used to
image the space. The Blickfeld Cube is a small (60 mm × 82 mm × 50 mm, 275 g), forward-
facing, solid-state sensor with a configurable interface to adjust the parameters including
field of view, scan resolution, and network time synchronization among other settings. The
Cubes used in this study were configured to a field of view (FOV) of 72 × 30 degrees, a
resolution of 230 scan lines, and a refresh rate of 2.4 Hz. The range precision, serving as
a metric for accuracy, was <2 cm (bias-free RMS, 10 m, 50% reflectivity target), ensuring
high measurement consistency under these conditions [95]. Additionally, a comparison
of point density across 10 point clouds yielded a mean density of 578 points per square
meter (median = 647), further confirming the high resolution and granularity of the data
captured by the system. Point density varied across the point cloud based on the overlap
of the sensors at any given point and had a 5–95th percentile range of 120 to 1846 points
per square meter.

Reported data include position, velocity, shape, and trajectory information. Data
from the Cube is sent via an ethernet port via TCP/IP to a computer that collects the data.
The sensors’ placement and orientation were aligned to a pre-collected lidar model of
Building X’s interior physical space (collected using a GeoSLAM Zeb Horizon lidar scanner,
GeoSLAM, Notthingham, United Kingdom) to facilitate alignment with a building coordi-
nate reference system (BCRS), as described by Chen and Clarke (2019) [39]. Construction of
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a BCRS involves defining a building-specific origin point and axes, and a transformation
equation from that datum to a geographic coordinate reference system. The 3D point clouds
from the 11 Blickfeld Cube sensors were manually aligned using CloudCompare software
version 2.12, based on a pre-recorded GeoSLAM scan of the same space. Manual alignment
was necessary as the iterative closest point (ICP) algorithm did not yield satisfactory results
due to the complex indoor environment. The manual alignment process was critical for
determining the exact positions of the sensors and establishing the building coordinate ref-
erence system (BCRS). Ultimately, the study’s 11 sensors were then fused into a single point
cloud with each sensor’s unique numeric ID embedded under the ‘pointsourceID’ field.

Each of the 11 lidar sensors in Building X was continuously monitored by a computer
connected with a private network. Custom logging software utilized the Blickfeld scanner
Python library to retrieve point cloud data from all sensors once per second. Each sensor
directly incorporates its position and orientation and transmits its coordinates in the BCRS
developed for the study. The fused data were then cropped to contain only the study area.
A second filter removes all floor and ceiling points so that only objects, walls and furniture
are visible. Two 2D orthographic images are then created by projecting the same 3D
point cloud data as PNGs with a 5 cm resolution, capturing both maximum elevation and
maximum intensity (scaled 0–255). These projections use an orthographic view, maintaining
the same sensors for both 3D point cloud capture and 2D image creation. A full 3D point
cloud frame is recorded in LAZ (a compressed version of the LAS file format, which stands
for LIDAR aerial survey) format every 10 s. These logs have been generated for Building X
since mid-August 2022. The layout of the study area posed significant challenges for sensor
deployment. The study area includes numerous pillars, objects, and multi-level floors,
which affected the placement of the sensors. The variable ceiling height also imposed
restrictions in the lower ceilings, like in the north hallway, meaning that sensors had to
be placed with a relatively horizontal view instead of a more top-down view as was the
case in the main community assembly space. The deployment required achieving a balance
between sensor coverage overlap and minimizing occlusions caused by structural elements.

Daily logs are then aggregated in three ways. First, all logs are combined into
hourly network common data form (NetCDF) files. NetCDFs are multidimensional
datasets—in this case a stack of rasters taken once per second—and with the same
two dimensions of maximum elevation and intensity. Second, each hour’s data are ag-
gregated for both dimensions to provide an hourly summary of activity. This measures
how many non-zero pixels were active during that hour. Third, each day’s images are
aggregated into an animation using FFmpeg software version 4.4.2. An example of a
portion of a day’s animation is available as Video S1 in the Supplementary Materials.

Three methods of object detection were used: deep learning, OpenCV-based methods,
and Percept software. Object detection is often applied to RGB/color images from a camera
(or frames from video) using shape, size, color and texture information. Object tracking
uses video or successive image frames to identify trajectories of detected objects over time.
In this study, the lidar data frames were rendered as images, but had different properties
than conventional RGB images that are more typically used. The point cloud output from
the sensors were used by Percept software whereas the orthographic images rendered
from these point clouds were used as the input for the deep learning and OpenCV based
methods (see Figure 2). These were single-band (0–255) grayscale images that represented
intensity and maximum elevation (as a Digital Surface Model or DSM). Points detected
by the lidar would flicker within a few centimeters, as is typical with low-power laser
scans of this type. However, when rendered as raster images, this would likewise manifest
as a characteristic flickering in the raster along the edges of objects that made frame-to-
frame comparisons noisy. These characteristics made the OpenCV-based object detection
comparatively difficult.
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Figure 2. Schematic flow chart showing data fusion and outputs for each of the detection methods.

The use of different methods in this study highlights a key comparison between simple,
resource-efficient algorithms and proprietary software. The deep learning and OpenCV-
based methods, despite being open source, demonstrated comparable performance when
applied to orthographic images rendered from lidar point clouds. This presents an impor-
tant contrast, as these algorithms require fewer computational resources and are more cost
effective compared with proprietary software like Percept. Percept’s direct use of point
clouds, combined with its resource-intensive proprietary algorithms, offer advantages in
terms of ease of integration and computational power. The study aims to illustrate that
open-source algorithms, while less resource intensive, can still deliver comparable results,
emphasizing the balance between simplicity, cost efficiency, and performance.

To evaluate object detection in this study, we implemented three distinct methods:
YOLOv5, OpenCV-based approaches, and Percept software. Below, we describe the setup
and performance of each method in detail, starting with YOLOv5.

2.1. YOLOv5

The YOLOv5 model was chosen for our deep learning-based object detection, due
to its proven balance between speed and accuracy [96]. The model was trained on an
80% sample of the manually labeled set and validated against the same 20% as all other
approaches. The training process was conducted using a custom configuration (YAML)
file, describing the location of the images, number of classes and class names. The train-
ing was conducted over 100 epochs with a batch size of 16 and an image resolution of
640 × 640 pixels. The training was undertaken for each of the different data modalities,
including the intensity returns, DSM returns, and an approach that combined intensity and
DSM into a two-band tiff.

2.2. OpenCV’s Background Subtraction and Frame Differencing

Two OpenCV approaches were employed to detect moving objects: background
subtraction [97] and frame differencing [98]. The background subtraction method is a com-
monly used method to detect objects in computer vision and works by separating the mov-
ing parts of a scene from the stationary part, or background. It is used to find foreground
objects by isolating them and comparing them with a frame where no objects are present.
For the background subtraction algorithm, the function cv2.createBackgroundSubtract-
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orMOG2() was used with a history length of 500 frames, meaning a moving window of
500 frames was used to model the background. A variance threshold of 16 was used that
dictated the algorithm’s sensitivity to changes in the scene. This setup was chosen to strike
a balance between accurately detecting genuine motion and minimizing artifacts such as
edge flickering and ‘ghosting’ effects caused by minor spatial and temporal misalignments.

Frame differencing is a technique to check differences between two video frames. It is
mostly used for removing effects of lighting in videos or tracking swiftly moving objects
within the video. It is computationally less intensive compared with the background
subtraction method. Here, a threshold of 25 intensity levels (intensity recorded as 0–255),
measuring the intensity difference between pixels in consecutive frames, was applied to
distinguish actual motion from background noise, including filtering out lidar noise. For
both methods, morphological opening with a 3 × 3 square kernel was used affecting a
1-pixel distance in all directions to clean the image and contour detection to identify and
track moving objects. For contour detection, a value of 15 pixels squared was used in
both the methods. By setting this threshold value for contour, the algorithm effectively
ignores minor variations and focuses on substantial changes—those with a size larger than
the threshold, significantly enhancing the algorithm’s precision. These threshold values
were iteratively optimized after running the model with our dataset.

2.3. Blickfeld Percept Software

In contrast to the image-based methods described above, Percept uses a mean shift
algorithm to detect and track moving objects in the 3D lidar stream. Mean shift algorithm is
a non-parametric, iterative algorithm that identifies clusters by identifying the highest den-
sity of data points. It effectively identifies the underlying structure of data by locating the
maxima of a density function, making it widely used for clustering and image segmentation
tasks [99]. Several tuning parameters were available in the software to improve detection.
These parameters included the minimum number of frames per initialization, exponential
decay, minimum weight threshold, minimum number of neighbor points, minimum points
for a cluster and linear acceleration noise. Over the course of a month, these parameters
were iteratively tuned to improve detection and reduce noise, with minimum number of
frames for initialization set at 10, exponential decay at 0.005, minimum weight threshold
at 0.17, minimum points for a cluster at 15, average radius of objects at 0.33 m, minimum
number of neighbor points at 3, and neighbor radius at 0.5 m. After implementing and
tuning the three object detection methods—YOLOv5, OpenCV, and Percept—the next step
was to assess their accuracy in detecting and tracking objects within the study space.

2.4. Accuracy Assessment

The reference dataset for accuracy assessment was generated by manually labeling
3600 frames using Microsoft’s visual object tagging tool (VOTT) version 2.2.0. The frames
were randomly selected from periods of peak activity, with 80% used for training the
deep learning model and 20% for validation. Accuracy was assessed using the Hungar-
ian algorithm to match detected points with the reference set, with a threshold distance
of 2 m. This threshold was selected after a sensitivity analysis of values up to 5 m (Figure 3).
Two meters was sufficient to overcome the misalignment between points that occurred
because of the sub-second temporal misalignment between Percept data and the raster files,
while still being small enough to exclude clear misses (e.g., nearby false positives). During
the assessment, detections outside the study space were observed. These detections were
primarily due to the reflected signals from the building’s glass walls, creating false positives.
These detections were clipped and removed from the accuracy assessment. Traditional
metrics like F1 score, precision, and recall were used. A video of each of these detection
methods is included in Videos S2–S4 of the Supplementary Materials.
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3. Results

This section presents the results of object detection in the study space. Each method’s
performance is analyzed based on object detection accuracy and efficiency, with quantita-
tive evaluations provided for F1 score, precision, and recall. These metrics highlight the
strengths and limitations of each technique, which are detailed in the following subsections.

3.1. Object Detection

This section presents the comparative analysis of each of the object detection tech-
niques: deep learning approaches on intensity, maximum elevation (i.e., DSM), and com-
bined rasters; OpenCV background subtraction and frame differencing on intensity rasters;
and Blickfeld’s Percept lidar tracking software. Each method’s efficacy is evaluated based
on its ability to accurately detect objects of interest within the frames. The analysis is
illustrated by comparing manually labeled points (shown in blue) against the algorithm-
detected points (shown in green). Quantitative scores for F1 ratio, recall and precision
provide performance metrics. The descriptive result for each method is as shown in Table 1.

Table 1. Performance summary of deep learning methods, OpenCV’s background subtraction and
frame differencing models and Percept in the detection of human movement within the study area.
Numbers in brackets for Percept discount for false positives that were in fact true detections of people
sitting on furniture.

Model

Deep Learning OpenCV
Blickfeld’s

PerceptDSM Intensity and DSM
Combined Intensity Background

Subtraction
Frame

Differencing

F1 0.879 0.875 0.869 0.575 0.438 0.606
Precision 0.843 0.826 0.827 0.858 0.491 0.507

Recall 0.919 0.930 0.916 0.433 0.395 0.754
Sum (TP) 1061 (91.9%) 1074 (93.0%) 1058 (91.6%) 500 (43.3%) 456 (39.5%) 699 (60.5%)
Sum (FP) 197 (17.1%) 226 (19.6%) 221 (19.1%) 83 (7.2%) 472 (40.9%) 680 (58.9%)
Sum (FN) 94 (8.1%) 81 (7.0%) 97 (8.4%) 655 (56.7%) 699 (60.5%) 228 (19.7%)

In the following sections, we present the results of each object detection method—deep
learning, OpenCV-based approaches, and Blickfeld’s Percept software.
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3.1.1. Deep Learning

The YOLOv5 deep learning model was applied to three different raster surfaces
derived from the lidar: (1) the maximum elevation returns in a grid cell (i.e., a digital
surface model or DSM), (2) the maximum intensity within a grid cell, and (3) a two-band
image constructed from the other two. These are illustrated in Figure 4a–c, respectively.
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bands within the same image. Most detections are the same but minor differences are evident between
different methods.

Overall, the deep learning approaches performed similarly well in all three metrics.
The maximum F1 score was 0.879 and was similarly high for precision (0.843) and recall
(0.930). The lowest false positive (FP) rate of the three was 17.1% and the lowest false
negative (FN) rate was 7.0% (all results summarized in Table 1). Of the three methods,
the DSM approach had the best F1 score (0.879), largely due to its better performance on
precision (0.843). The two-band intensity + DSM approach performed slightly worse on F1
and precision (0.875, 0.826), but slightly better on recall (0.930). Intensity performed lowest
on all three metrics (0.869, 0.827, 0.916 respectively), but all methods performed well and
within a few percentage points of each other.

Deep learning was able to accurately detect people moving in the study space but was
unable to detect people sitting on or standing near furniture, even when specifically trained
to. Errors included missing detections, multiple detections for a single person, and false
negatives in areas with sparse lidar coverage. Error scenarios are shown in Figure 5.
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Figure 5. Error scenarios: (a) a missed detection due to atypical size and shape of point cloud
cluster, (b) a missed detection due to inadequate coverage, (c) a missed detection due to an indi-
vidual blending into the furniture as they linger, (d) a sample point cloud cluster where a single
individual’s lidar signature is disassociated, and (e) additional false positives from a single individual
due to misalignment of sensors. The manually labeled points are shown in blue and detections
shown in orange.

3.1.2. OpenCV

The OpenCV framework implemented two computer vision methods for object detec-
tion on the intensity rasters: (1) background subtraction and (2) frame differencing. These
are illustrated in Figure 6a,b.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

Overall, the deep learning approaches performed similarly well in all three metrics. 
The maximum F1 score was 0.879 and was similarly high for precision (0.843) and recall 
(0.930). The lowest false positive (FP) rate of the three was 17.1% and the lowest false neg-
ative (FN) rate was 7.0% (all results summarized in Table 1). Of the three methods, the 
DSM approach had the best F1 score (0.879), largely due to its be er performance on pre-
cision (0.843). The two-band intensity + DSM approach performed slightly worse on F1 
and precision (0.875, 0.826), but slightly be er on recall (0.930). Intensity performed lowest 
on all three metrics (0.869, 0.827, 0.916 respectively), but all methods performed well and 
within a few percentage points of each other.  

Deep learning was able to accurately detect people moving in the study space but 
was unable to detect people si ing on or standing near furniture, even when specifically 
trained to. Errors included missing detections, multiple detections for a single person, and 
false negatives in areas with sparse lidar coverage. Error scenarios are shown in Figure 5. 

 
Figure 5. Error scenarios: (a) a missed detection due to atypical size and shape of point cloud cluster, 
(b) a missed detection due to inadequate coverage, (c) a missed detection due to an individual blend-
ing into the furniture as they linger, (d) a sample point cloud cluster where a single individual’s 
lidar signature is disassociated, and (e) additional false positives from a single individual due to 
misalignment of sensors. The manually labeled points are shown in blue and detections shown in 
orange: 

3.1.2. OpenCV 
The OpenCV framework implemented two computer vision methods for object de-

tection on the intensity rasters: (1) background subtraction and (2) frame differencing. 
These are illustrated in Figure 6a,b. 

 
Figure 6. Sample frames showing detections from the OpenCV models using (a) background sub-
traction and (b) frame differencing. 

Background subtraction achieved a high precision rate of 0.858 but struggled with 
recall (0.433), resulting in an F1 score of 0.575. Frame differencing had a precision rate of 
0.491 and a recall rate of 0.395, resulting in an F1 score of 0.438.  

The OpenCV models had significant error scenarios, including detections due to edge 
flickering, low sensor coverage, and stationary individuals. Each model took approxi-
mately one hour to process a day’s data. Error scenarios are demonstrated in Figure 7. 

Figure 6. Sample frames showing detections from the OpenCV models using (a) background
subtraction and (b) frame differencing.

Background subtraction achieved a high precision rate of 0.858 but struggled with
recall (0.433), resulting in an F1 score of 0.575. Frame differencing had a precision rate of
0.491 and a recall rate of 0.395, resulting in an F1 score of 0.438.

The OpenCV models had significant error scenarios, including detections due to edge
flickering, low sensor coverage, and stationary individuals. Each model took approximately
one hour to process a day’s data. Error scenarios are demonstrated in Figure 7.
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Figure 7. Error scenarios: (a) False positive due to raster edge flickering effects, (b) a missed detection
due to lower density lidar coverage, (c) missed detections where individuals linger in the same space
for some time and are not detected by the algorithm. The manually labeled points are shown in blue
and detections shown in orange.
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3.1.3. Blickfeld’s Percept

Blickfeld’s Percept lidar perception software records instances of movement within
the lidar stream in real time. The results are shown in Figure 8.
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Figure 8. Sample frame showing detections by Blickfeld’s Percept, with manually labeled points
shown in blue and detections shown in orange.

Percept achieved an F1 score of 0.606 and a recall rate of 0.754, indicating reasonable
skill at recognizing movements. However, the precision rate was low (0.507) due to a
high number of false positives. Detailed metrics are shown in Table 1. Percept was better
at detecting people near furniture and on staircases but produced false positives due to
temporal misalignment and multiple detections for single objects. Error scenarios are
shown in Figure 9.
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Figure 9. Error scenarios: (a) false positives as people in the furniture move, (b) false positives on
the staircase, (c) a misalignment error between detections and ground truth points attributed to time
differences between raster logs and Percept data, and (d) false positives due to multiple signatures of
the same object as a result of time misalignments between sensors in Percept. The manually labeled
points are shown in blue and detections shown in orange.

3.2. Comparison of Detection Techniques

Overall, the deep learning approaches performed similarly well in all three metrics.
The maximum F1 score was 0.879 and was similarly high for precision (0.843) and recall
(0.930) (Figure 10). The lowest false positive (FP) rate of the three was 17.1% and the
lowest false negative (FN) rate was 7.0% (all results summarized in Table 1 below). Of the
three methods, the DSM approach had the best F1 score (0.879), largely due to its better
performance on precision (0.843). The two-band intensity + DSM approach performed
slightly worse on F1 and precision (0.875, 0.826), but slightly better on recall (0.930). Inten-
sity performed lowest on all three metrics (0.869, 0.827, 0.916 respectively), but all methods
performed well and within a few percentage points of each other.
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Figure 10. Chart showing performance summary of detection methods including deep learning ap-
proaches for DSM, intensity and dual band; OpenCV’s background subtraction and frame differencing
models; and Percept.

3.3. Spatial Distribution of False Positives and False Negatives

Each of the methods had its own unique pattern of error, specifically of false positives
and false negatives (see Figure 11). The deep learning approach showed a much smaller
number of FP and FN relative to the other two methods. Generally, patterns of both types
of error were proportional to occupancy; however, some specific local differences were
apparent. Here, both types of error were less likely to be in movement corridors and more
likely to be near entrances and furniture. OpenCV had a large cluster of FPs around the
movement corridors, but notably few near the northwest entryway and center vestibule
near the foot of the staircase, the latter likely because of particularly high sensor coverage
there. OpenCV FNs were clustered near entryways. Percept produced a comparatively
high FP rate throughout the space due to sensitivity to temporal misalignment and genuine
detections of people near furniture that were not included in the validation samples. Most
FNs from Percept were in movement corridors.
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3.4. Aggregate Movement Analysis and Temporal Patterns

Each method (deep learning using DSM, OpenCV using background subtraction,
and Percept) was applied to the lidar data for the month of September 2023 to analyze
spatio-temporal patterns of occupancy. A kernel density estimation technique was used to
identify and visualize the areas of high and low movement and occupancy (Figure 12).
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Figure 12. Kernel density estimation (KDE) map of movement patterns detected by the detection
models. (a) Deep learning, (b) OpenCV, and (c) Percept.

Across the detection models, the spatial patterns of use were similar. Each highlighted
the northwest entryway leading towards campus, the staircase to the second floor, and
the hallway, leading to the elevator as the main hotspots of activity. Notable differences
between models, however, were observed. The deep learning and Percept models show
the northeast corridor leading to the Blacksburg downtown area as a lesser hotspot. The
deep learning model additionally showed corridors of orthogonal movement in the study
area. OpenCV underrepresented the activity near entrances and the periphery compared
with the other two models. This is because the OpenCV model was less sensitive to people
entering the space and only detected them after they had been present for a few consecutive
frames. Alternatively, Percept demonstrated a higher sensitivity to detections involving
furniture, and showed more hotspots in the locations where furniture was located. This
indicates that, while all three methods show similar locations for high activity within the
space, Percept was better at detecting static presence or occupancy within the space.

To visualize the temporal trends in different models, the detections were aggregated by
taking a daily average and normalizing them using a maximum–minimum normalization
scheme. This was undertaken for a continuous two-week period in September and for
hours of each day (see Figure 13). The normalized data show similar trends across all
detection methods, with only minor differences. For example, Percept provides noticeably
lower estimates for September 12 and 13 and notably higher estimates at 4 and 5 pm than
the other two methods. The Labor Day (September 4) weekend (i.e., days 2–4) is clearly
visible as the least active of the first 14 days in September.
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4. Discussion

Each of the three approaches was successful in tracking human movement through the
study space using both rasterized and full 3D lidar data streams. The deep learning method
was the most successful, followed by Percept, and then the OpenCV approach. Notably, the
false positive and false negative rates were considerably higher for OpenCV and Percept.
Percept was moderately worse than deep learning at tracking overall movement in space
but was better at tracking individuals on furniture. The logging and analysis of ortho-
graphic lidar images provided a clear benefit over using the Percept software alone. These
images (1) served as a useful background layer to interpret Percept detections, (2) allowed
for improved post-analysis, and (3) required less computing power than 3D analysis. They
also helped to illustrate that the lidar representations preserve anonymity. Although the
raster images themselves did not track furniture in the sense of (x, y, time) coordinates,
the furniture itself was represented in the data and could, in theory, be recovered later.
However, full 3D tracking proved especially important on places like large staircases with
usable activity space underneath that are not as easily represented in 2.5D.

Deep learning has been applied in point clouds for point segmentation in many do-
mains in both 3D [100,101] and 2D analyses [102]. Given that deep learning models use each
frame individually to identify people, our initial assumption was that this approach would
be less effective than OpenCV, which allows for ready comparison between frames. The
YOLOv5 deep learning model relies on unique textures and intensity variations to identify
people in the study space. Moreover, through extensive training on a large dataset, YOLOv5
learned the specific shapes and structural characteristics of human movement within the
space. Unlike sliding window and region proposal techniques, YOLOv5 considers the
entire image during both training and testing, thereby capturing contextual information
that enhances detection accuracy. YOLOv5’s ability to learn generalizable representations
of objects across diverse scenarios efficiently enhances its ability to detect people in the
projected lidar frames [76]. The deep learning model showed similar performance for all
three lidar derivatives (i.e., DSM, intensity, and the dual band combination of the two),
with the DSM having the best overall performance.

While the OpenCV model was generally the lowest performing of the three approaches,
its challenges are evident and opportunities for improvement remain. Its poor performance
was partly due to the persistent edge flickering noise in the orthographic images that
occurs between consecutive frames during the conversion of the 3D lidar data into the
2D orthographic images. Low power lidar units often display inconsistency in their
scans [103,104]. When rasterized, the small changes of points can fall just within neigh-
boring pixels, causing them to activate; as a result, the resulting images of consecutive
frames appear to flicker, or jitter, affecting all the objects within the space. This noise was
persistent in our data throughout the study space. OpenCV models were more affected
by the flickering noise because they tracked movement by analyzing the difference be-
tween consecutive frames, whereas deep learning only looks at a single frame at a time.
Morphological opening and the detection size parameter were adjusted to mitigate the
flickering; these were partially successful but did not improve OpenCV’s performance to
the level of the deep learning or Percept methods. More aggressive use of opening resulted
in the loss of lidar point clusters in low-coverage areas. The grid size for the rasterized
lidar data was set to 5 cm; attempts to use larger grid sizes were similarly unsuccessful at
mitigating the flickering effect, because the edge pixels were still activated by the unstable
lidar point displacements near their edges. This represents a fundamental limitation of the
raster data structure.

Percept detected people moving and pausing, whereas deep learning only detected
movement well. However, while Percept does track stationary people, it loses track of
them if they remain stationary for a brief period of time (~15 s). This limits the ability to
continuously track individuals in scenarios where stationary behavior is common (e.g.,
students using the furniture for studying). Reconnecting the two (or more) separate unique
IDs generated for a predominantly stationary individual can be done but requires additional
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post-processing of data. Additionally, Percept’s effectiveness relies on careful parameter
tuning. With default settings, we found Percept produced a high number of false positives,
often repeatedly in specific locations. Of the three methods, Percept was most prone
to ghosting errors caused by time misalignments between sensors. These could not be
eliminated even when the precise time protocol was used. If the temporal misalignments
that caused the ghosting errors could be effectively addressed, Percept’s performance in
tracking both moving and stationary individuals could be commensurate with that of
deep learning models. Percept’s voluminous data requirements and resource-intensive
post-analysis could be improved with the implementation of a more efficient method to log
data in XYZT format, where T is the date and time of detection.

The detection of people on furniture was a challenge for all of the methods. Deep
learning struggled with detecting stationary people and people on furniture, even when
models were specifically trained to detect seated people and bare furniture. The inclusion
of multiple classes in the training process further reduced the ability of the model to detect
people moving in the space, which was of primary interest. OpenCV was better at detecting
seated people, but the contour size filter designed to differentiate between noise and actual
detections often filtered out detections on the furniture.

Percept’s false positives included detections of people sitting on furniture—a good
result, but one that negatively impacted its precision and F1 scores when only movement
was considered, as it was for this study. Percept was better able to detect people on
furniture as movement included more volumetric surface area (rather than just a perimeter).
A subsequent analysis of Percept’s detections suggests that only about 40 percent of its false
positives were due to people sitting on the furniture. Adjusting for these would improve
Percept’s precision from 0.507 to 0.631, and F1 from 0.606 to 0.690, still considerably lower
scores than the deep learning approaches. As each model had strengths and weaknesses,
a hybrid detection model that combined these approaches, harnessing deep learning’s
frame-based detections, OpenCV’s simplicity and Percept’s capability to detect motion
in occupancy and movement, could be superior to any of the individual approaches. As
an example, deep learning could be applied to the difference between frames, rather than
frames themselves, thus integrating OpenCV into its operation.

Sensor coverage plays a crucial role in determining the accuracy and reliability of
object detection methods. Sensor placement required access to wired ethernet (power was
provided over ethernet lines), but also needed to be sufficiently unobtrusive to maintain
the overall atmosphere of the newly constructed building. The field of view of the lidar
sensors was also limited. Most areas were covered by multiple sensors except for the long
hallways near the doors. In these areas especially, there were missed detections with all
methods, due to the reduced coverage. A combination of multiple sensors could increase
sensor coverage and improve overall detection performance. One option for enhancing
coverage is integrating lidar with radar, as their complementary capabilities allow for
seamless operation in both indoor and outdoor settings.

5. Conclusions

Recent advancements in modeling indoor spaces have primarily focused on static maps
and models, such as building information models (BIM) and other CAD-derived digital
3D models. However, these models do not adequately address the dynamic aspects of
indoor environments, particularly human movement. This study examined how lidar-based
tracking algorithms can capture the spatial dynamics of indoor spaces while maintaining the
privacy of the people using them. The utilization of 2D lidar data, in the form of projected
frames, presents a practical solution for efficient data storage and analysis. However, in
indoor spaces with complex vertical structures or multiple floors, 2D data may not fully
capture the spatial relationships.

Our assessment of object detection models revealed that deep learning outperformed
OpenCV and Percept, in terms of accuracy. However, each approach had its strengths and
weaknesses. Deep learning performed well operating only on individual frames but had
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trouble tracking people when they sat on furniture, even when specifically trained to do
so. OpenCV-based frame differencing and background subtraction performed worse than
expected due to the edge flickering noise present as a result of the rasterization of the lidar
data but could be developed further. Percept was particularly good at tracking people on
staircases and when they sat on furniture but was the most resource intensive.

Future work should focus on model optimization (a combination of two or more of
these models), explore alternative data logging techniques, and investigate innovative
approaches to mitigate the computational challenges associated with 3D data analysis.
Upon addressing these challenges, the accuracy, efficiency, and applicability of these tech-
nologies across various settings will be enhanced, paving the way for more sophisticated
and accessible spatial analysis tools.

Additionally, the detection models could benefit from integrating complementary
sensor types and strategies configured to protect privacy. These methods could improve
detection accuracy and validation by providing additional context. One approach involves
using microphones to capture audio levels. This can detect areas of significant activity,
which can be cross-referenced with lidar detections to confirm actual human presence.
Additionally, implementing indoor positioning systems (IPS) on individuals can provide
precise location data to validate and enhance the accuracy of lidar-based detections, resolv-
ing ambiguities such as distinguishing between closely spaced individuals. An additional
validation mechanism could involve the installation of sensors on entry and exit points,
which can monitor the number of people entering and leaving the space. This ensures that
the number of detected individuals aligns with entries and exits, preventing unexplained
appearances in the lidar data. Moreover, cross-validating lidar detections with wi-fi usage
data within the building could provide another layer of verification. Wi-fi data indicate
the presence and movement of individuals based on their device connections, offering a
non-invasive method by which to confirm occupancy patterns.

By integrating these complementary methods, future studies can enhance the robust-
ness and accuracy of tracking systems in indoor environments, leading to more sophisti-
cated and accessible spatial analysis tools while maintaining privacy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16183453/s1, Video S1: Composite lidar visualization; Video S2:
OpenCV background subtraction; Video S3: Deep Learning; Video S4: Percept.
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